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Single Antenna
The Receiving Power has anAiry Diffraction pattern!

Note the mainlobe, sidelobes and backlobes of the power pattern.

The FWHM of the mainlobe of the power pattern is (D: the diameter of the antenna aperture)

FWHM = 1.02
λ

D
rad ∼ 58.4◦

λ

D
with λ =

c

ν

This FWHM is the angular resolution of your map, when scanning over the sky with this antenna!

To be strict, use1.22 λ
D

, the first null, for the resolution! What about ALMA antenna 12 m in diameter

at 100 GHz? (1 radian≈ 206265 arcsec).
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Angular Resolution

Angular resolution: it is the smallest angular separation which two point sources can have in order to

be recognized as separate objects.
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The Quest for Angular Resolution

Angular resolution: it is the smallest angular separation which two point sources can have in order to

be recognized as separate objects.
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The Quest for Angular Resolution

Angular resolution of a single antennais θ ∼ λ/D

The 30-meter aperture of a e.g., IRAM antenna provides a resolution, e.g.,∼ 20.6 arcsecond at 100

GHz (λ = 3mm), too low for modern astronomy!! (Note 1 radian≈ 206265 arcsec).

How about increasingD i.e., building a bigger telescope? This trivial solution, however, is not

practical. e.g., 1" resolution atλ = 3 mm requires a600 m aperture!! Larger for longer wavelength!!

Green Bank Telescope (100 m) (Left) 1988.11.15 (Right) 1988.11.16
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Aperture synthesis
Aperturesynthesis: synthesizing the equivalent aperture through combinations of elements, i.e.,

replacing a single large telescope by a collection of small telescope “filling" the large one!

Technically difficult but feasible.⇒ Interferometers!!

This method was developed in the 1950s in England and Australia. Martin Ryle (Univ. of Cambridge)

earned a Nobel Prize for his contributions.

Very Large Array, each with a 25 meter in diameter! Nowθ ∼ λ/D ∼ 1 arcsec at 45 GHz withD

being the Array size (max. baseline∼ 1 km)!
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Young’s Double-Slit Experiment
The classic experiment ofinterferenceeffectsin light wavesin OPTICAL:

Here assumea Monochromaticsource and the rays arein phase when they pass through the slits.

Also the slit widtha ≪ λ, so that the slits behave essentially like point sources.
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Young’s Double-Slit Experiment

At the screen, let’s haveE(1) = E1ei(kr1−wt) andE(2) = E2ei(kr2−wt) from the two Young’s

slits, and thus the totalE = E(1) + E(2). Herek = 2π
λ

andω = 2πν.

Obtained image of interference:(time averaged) fringes

I(x) = 〈E · E∗〉 = I1 + I2 + 2
p

I1I2 cos(x) = 4I cos2(
πb sin θ

λ
)

with x = k(r2 − r1) = 2π
λ

b sin θ (asr2 − r1 = b sin θ), I1 = E2
1 , I2 = E2

2 , andI1 = I2 = I.

ThusI(x) = 4I for constructive interference (bright spots) andI(x) = 0 for destructive interference

(dark spots) ==> fringe. The condition for constructive interference at the screen is

b sin θ = mλ, m = 0,±1,±2, ... Fringe separation (i.e., resolution)∼ λ/(b cos θ)
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For a point source
What if the slit width isa ≫ λ? Each slit has a Airy diffraction pattern, ie.,

Pn(θ) = sinc2(
a sin θ

λ
)

Then combining the effect of the slit width, we have for a point source:

I(θ) = (
a

λ
)2sinc2(

a sin θ

λ
) · 4I cos2(

πb sin θ

λ
)

Hereb = 5a and we only show the pattern inside the main lobe of the Airy pattern.
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Effect of Source Size
Effectof increasing sourcesize: If the source hole size increases toλ/b, then the fringes will disappear.

Fringes disappear!⇒ Fringe contrast is linked to the spatial properties of the source.

I(x) ∝ sinc2(
a sin θ

λ
)
h

I1 + I2 + 2
p

I1I2|C| cos(x)
i

with |C| =
Imax − Imin

Imax + Imin

Here|C| a.k.a fringe visibility measured in optical interferometry, a measure of coherency. It is 1 for a

coherent source and 0 for not. Here,the coherency is lost as the source size increases, due to the

superposition of waves from different (assumed to be incoherent) part of the source.
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Effect of separation
Effect of increasing b: The source is a uniform disk

Constructive and destructive interferences!

The Visibility is a Fourier Transform of the source!

Measure visibility at differentb ⇒ source sizes!

Largerb, higher fringe freq., sensitive to smaller scale!

What about the source is a point source?
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Radio Interferometer

Elementary interferometer. The arrow indicates the rotation of the earth. Here antennas⇒ Young’s

slits!

An interferometer ofn antennas hasn(n−1)
2

unique pairs of these two-antenna interferometer.
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Radio Interferometer

D: baseline length

θ: angle of the pointing direction from

the zenith, changing with earth rotation.

τg : geometrical delay= D
c

sin θ

The wavefront from the source in direction

θ is essentiallyplanarbecause of great distance

traveled, and it reaches the right-hand antenna

at a timeτg before it reaches the left-hand one:

Right: E cos(2πν(t − τg)) Left: E cos(2πνt)

The projected length of the baseline

on the sky,D cos θ, changes as the earth rotates.
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Radio Interferometer

τg : Geometrical time delay

τi: Instrumental time delay

X: Bandpass amplifiers.

Correlator: Multiplier+ Integrator

Output: Fringe Visibility

Multiplier:

Multiply the signals from the two antennas.

⇒ Signals are combined by pairs!

Integrator:

Time Averaging Circuit, e.g., 30 sec integration

time for each scan in a SMA observation.
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Radio Interferometer without τi

Without any instrumental delay, the output of the multiplier is proportional to

F = 2 cos[2πνt] cos[2πν(t − τg)] = cos(2πντg) + cos(4πνt − 2πντg)

with τg = D
c

sin θ. Here, due to earth rotation,
dτg

dt
= D

c
cos θ dθ

dt
≪ 1. With time-averaging

integrator, the more rapidly varying term inF is easily filtered out leaving

r ≡
1

T

Z T

0
Fdt = cos(2πντg) = cos(

2πDξ

λ
) with ξ = sin θ

For sidereal sources the variation ofθ with time as the earth rotates generates quasi-sinusoidal fringes

at the correlator due to the variation ofτg .

Polar plot of the fringe functionr with D/λ = 3. ⇒ Need Fringe stopping by introducingτi.
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Radio Interferometer with τi

Introducing a delayτi with extra cable, then the response in the output of the correlator is

r = cos(2πντ) with τ = τg − τi

Now letθ0 be the pointing center (i.e. pointing direction) of the antenna. Consider a point source at

positionθs = θ0 + θ′, whereθ′ is very small.

Then withτg = D
c

sin(θ0 + θ′), the response of the point source is

r = cos{2πν[
D

c
sin(θ0 + θ′) − τi]} = cos{2πν[

D

c
(sin θ0 cos θ′ + cos θ0 sin θ′) − τi]}
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Radio Interferometer with τi

From the previous slide, we have the response of the correlator (for smallθ′, we havecos θ′ ≈ 1):

r ≈ cos{2πν[
D

c
(sin θ0 + cos θ0 sin θ′) − τi]}

Settingτi = τg(θ0) = (D/c) sin θ0, then the response is also a sinusoidal fringe pattern:

r = cos(2πν
D

c
cos θ0 sin θ′) ≡ cos(2πuξ′)

but with ξ′ = sin θ′ ≈ θ′ = θs − θ0 and

u =
Dν

c
cos θ0 =

D cos θ0

λ

Introducingτi, thenθ ⇒ θ′, i.e, absolute position⇒ relative position and the fringe pattern is attached

to the pointing center. Hereu can be considered as a spatial frequency of the fringe definedby the

projected baseline in the unit ofλ. Also,sinceu changes with the earth rotation, we can map the source

at differentu if the antennas track the source during observation.The resolution is then given by1/u.
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Interferometer
The power reception pattern of an interferometer is the antenna reception power pattern (A1)

multiplied by the correlator fringe patternr:

ri(u, θ) = cos[2πu(θ − θ0)]A1(θ − θ0)

A1 is now called the primary beam pattern (i.e., the field of view) of the antenna.
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Visibility function

For an extended source of brightnessB1(θs), the output power of the interferometeris

R(u, θ0) ∝ △ν

Z

source
B1(θs) cos[2πu(θs − θ0)]A1(θs − θ0)dθs

Since the antennas alwaystrack the sourceand the field of view is small (i.e., < 10 arcmin), we can

defineξ′ = θs − θ0 andB1(θs) → B(ξ′). So,

R(u, θ0) → R(u) = △ν

Z

source
B(ξ′) cos(2πuξ′)A1(ξ

′)dξ′

==> Fourier Transform of the source brightness distribution! => Visibility!
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Example: SMA

Submillimeter Array: Number of antennas:n = 8, number of unique baselines (distance between pairs

of antennas):n(n − 1)/2 = 28.

How about ALMA, which has 16 antennas in the Early Science phase, and 50 antennas in the full

operation mode?
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Example: SMA HH 211 Jet

==> Resolution given by the synthesized beam fitted to the main lobe of the dirty beam (∼ 1/umax)

==> Source image given by inverse Fourier Transform of the Visibility (Next Lecture)
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