# Introduction to Interferometry 

Chin-Fei Lee<br>Taiwan ALMA Regional Center (ARC) Node at ASIAA<br>cflee@asiaa.sinica.edu.tw

## Single Antenna

The Receiving Power has an Airy Diffraction pattern!


Note the mainlobe, sidelobes and backlobes of the power pattern.
The FWHM of the mainlobe of the power pattern is ( $D$ : the diameter of the antenna aperture)

$$
\mathrm{FWHM}=1.02 \frac{\lambda}{D} \operatorname{rad} \sim 58.4^{\circ} \frac{\lambda}{D} \quad \text { with } \lambda=\frac{c}{\nu}
$$

This FWHM is the angular resolution of your map, when scanning over the sky with this antenna! To be strict, use $1.22 \frac{\lambda}{D}$, the first null, for the resolution! What about ALMA antenna 12 m in diameter at 100 GHz ? ( 1 radian $\approx 206265 \operatorname{arcsec}$ ).

## Angular Resolution

Angular resolution: it is the smallest angular separation which two point sources can have in order to be recognized as separate objects.



## The Quest for Angular Resolution

Angular resolution: it is the smallest angular separation which two point sources can have in order to be recognized as separate objects.


## The Quest for Angular Resolution

Angular resolution of a single antenna is $\theta \sim \lambda / D$
The 30-meter aperture of a e.g., IRAM antenna provides a resolution, e.g., $\sim 20.6$ arcsecond at 100 $\mathrm{GHz}(\lambda=3 \mathrm{~mm})$, too low for modern astronomy!! (Note 1 radian $\approx 206265 \operatorname{arcsec}$ ).

How about increasing $D$ i.e., building a bigger telescope? This trivial solution, however, is not practical. e.g., $1^{\prime \prime}$ resolution at $\lambda=3 \mathrm{~mm}$ requires a 600 m aperture!! Larger for longer wavelength!!


Green Bank Telescope (100 m) (Left) 1988.11.15 (Right) 1988.11.16

## Aperture synthesis

Aperture synthesis: synthesizing the equivalent aperture through combinations of elements, i.e., replacing a single large telescope by a collection of small telescope "filling" the large one! Technically difficult but feasible. $\Rightarrow$ Interferometers!!
This method was developed in the 1950s in England and Australia. Martin Ryle (Univ. of Cambridge) earned a Nobel Prize for his contributions.


Very Large Array, each with a 25 meter in diameter! Now $\theta \sim \lambda / D \sim 1 \operatorname{arcsec}$ at 45 GHz with $D$ being the Array size (max. baseline $\sim 1 \mathrm{~km}$ ) !

## Young's Double-Slit Experiment

The classic experiment of interference effects in light waves in OPTICAL:


Here assume a Monochromatic source and the rays are in phase when they pass through the slits.
Also the slit width $a \ll \lambda$, so that the slits behave essentially like point sources.

## Young's Double-Slit Experiment



At the screen, let's have $E_{(1)}=E_{1} e^{i\left(k r_{1}-w t\right)}$ and $E_{(2)}=E_{2} e^{i\left(k r_{2}-w t\right)}$ from the two Young's slits, and thus the total $E=E_{(1)}+E_{(2)}$. Here $k=\frac{2 \pi}{\lambda}$ and $\omega=2 \pi \nu$.

Obtained image of interference: (time averaged) fringes

$$
I(x)=\left\langle E \cdot E^{*}\right\rangle=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos (x)=4 I \cos ^{2}\left(\frac{\pi b \sin \theta}{\lambda}\right)
$$

with $x=k\left(r_{2}-r_{1}\right)=\frac{2 \pi}{\lambda} b \sin \theta\left(\right.$ as $\left.r_{2}-r_{1}=b \sin \theta\right), I_{1}=E_{1}^{2}, I_{2}=E_{2}^{2}$, and $I_{1}=I_{2}=I$. Thus $I(x)=4 I$ for constructive interference (bright spots) and $I(x)=0$ for destructive interference (dark spots) $==>$ fringe. The condition for constructive interference at the screen is $b \sin \theta=m \lambda, m=0, \pm 1, \pm 2, \ldots$ Fringe separation (i.e., resolution) $\sim \lambda /(b \cos \theta)$

## For a point source

What if the slit width is $a \gg \lambda$ ? Each slit has a Airy diffraction pattern, ie.,

$$
P_{n}(\theta)=\operatorname{sinc}^{2}\left(\frac{a \sin \theta}{\lambda}\right)
$$

Then combining the effect of the slit width, we have for a point source:

$$
I(\theta)=\left(\frac{a}{\lambda}\right)^{2} \operatorname{sinc}^{2}\left(\frac{a \sin \theta}{\lambda}\right) \cdot 4 I \cos ^{2}\left(\frac{\pi b \sin \theta}{\lambda}\right)
$$



Here $b=5 a$ and we only show the pattern inside the main lobe of the Airy pattern.

## Effect of Source Size

Effect of increasing source size: If the source hole size increases to $\lambda / b$, then the fringes will disappear.


Fringes disappear! $\Rightarrow$ Fringe contrast is linked to the spatial properties of the source.

$$
I(x) \propto \operatorname{sinc}^{2}\left(\frac{a \sin \theta}{\lambda}\right)\left[I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}}|C| \cos (x)\right] \quad \text { with } \quad|C|=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}
$$

Here $|C|$ a.k.a fringe visibility measured in optical interferometry, a measure of coherency. It is 1 for a coherent source and 0 for not. Here, the coherency is lost as the source size increases, due to the superposition of waves from different (assumed to be incoherent) part of the source.

## Effect of separation

Effect of increasing b: The source is a uniform disk



Constructive and destructive interferences! The Visibility is a Fourier Transform of the source!

Measure visibility at different $b \Rightarrow$ source sizes!


Larger $b$, higher fringe freq., sensitive to smaller scale!
What about the source is a point source?

## Radio Interferometer



Elementary interferometer. The arrow indicates the rotation of the earth. Here antennas $\Rightarrow$ Young's slits!
An interferometer of $n$ antennas has $\frac{n(n-1)}{2}$ unique pairs of these two-antenna interferometer.

## Radio Interferometer



- : baseline length
$\theta$ : angle of the pointing direction from the zenith, changing with earth rotation.$\tau_{g}:$ geometrical delay $=\frac{D}{c} \sin \theta$

The wavefront from the source in direction $\theta$ is essentially planar because of great distance traveled, and it reaches the right-hand antenna at a time $\tau_{g}$ before it reaches the left-hand one:

Right: $E \cos \left(2 \pi \nu\left(t-\tau_{g}\right)\right)$ Left: $E \cos (2 \pi \nu t)$
The projected length of the baseline on the sky, $D \cos \theta$, changes as the earth rotates.

## Radio Interferometer

$\tau_{g}$ : Geometrical time delay
$\square \tau_{i}$ : Instrumental time delay

- X: Bandpass amplifiers.

Correlator: Multiplier + Integrator
Output: Fringe Visibility

Multiplier:
Multiply the signals from the two antennas.
$\Rightarrow$ Signals are combined by pairs!
Integrator:
Time Averaging Circuit, e.g., 30 sec integration time for each scan in a SMA observation.

## Radio Interferometer without $\tau_{i}$

Without any instrumental delay, the output of the multiplier is proportional to

$$
F=2 \cos [2 \pi \nu t] \cos \left[2 \pi \nu\left(t-\tau_{g}\right)\right]=\cos \left(2 \pi \nu \tau_{g}\right)+\cos \left(4 \pi \nu t-2 \pi \nu \tau_{g}\right)
$$

with $\tau_{g}=\frac{D}{c} \sin \theta$. Here, due to earth rotation, $\frac{d \tau_{g}}{d t}=\frac{D}{c} \cos \theta \frac{d \theta}{d t} \ll 1$. With time-averaging integrator, the more rapidly varying term in $F$ is easily filtered out leaving

$$
r \equiv \frac{1}{T} \int_{0}^{T} F d t=\cos \left(2 \pi \nu \tau_{g}\right)=\cos \left(\frac{2 \pi D \xi}{\lambda}\right) \quad \text { with } \xi=\sin \theta
$$

For sidereal sources the variation of $\theta$ with time as the earth rotates generates quasi-sinusoidal fringes at the correlator due to the variation of $\tau_{g}$.


Polar plot of the fringe function $r$ with $D / \lambda=3 . \Rightarrow$ Need Fringe stopping by introducing $\tau_{i}$.

## Radio Interferometer with $\tau_{i}$

Introducing a delay $\tau_{i}$ with extra cable, then the response in the output of the correlator is

$$
r=\cos (2 \pi \nu \tau) \quad \text { with } \tau=\tau_{g}-\tau_{i}
$$

Now let $\theta_{0}$ be the pointing center (i.e. pointing direction) of the antenna. Consider a point source at position $\theta_{s}=\theta_{0}+\theta^{\prime}$, where $\theta^{\prime}$ is very small.


Then with $\tau_{g}=\frac{D}{c} \sin \left(\theta_{0}+\theta^{\prime}\right)$, the response of the point source is

$$
r=\cos \left\{2 \pi \nu\left[\frac{D}{c} \sin \left(\theta_{0}+\theta^{\prime}\right)-\tau_{i}\right]\right\}=\cos \left\{2 \pi \nu\left[\frac{D}{c}\left(\sin \theta_{0} \cos \theta^{\prime}+\cos \theta_{0} \sin \theta^{\prime}\right)-\tau_{i}\right]\right\}
$$

## Radio Interferometer with $\tau_{i}$

From the previous slide, we have the response of the correlator (for small $\theta^{\prime}$, we have $\cos \theta^{\prime} \approx 1$ ):

$$
r \approx \cos \left\{2 \pi \nu\left[\frac{D}{c}\left(\sin \theta_{0}+\cos \theta_{0} \sin \theta^{\prime}\right)-\tau_{i}\right]\right\}
$$

Setting $\tau_{i}=\tau_{g}\left(\theta_{0}\right)=(D / c) \sin \theta_{0}$, then the response is also a sinusoidal fringe pattern:

$$
r=\cos \left(2 \pi \nu \frac{D}{c} \cos \theta_{0} \sin \theta^{\prime}\right) \equiv \cos \left(2 \pi u \xi^{\prime}\right)
$$

but with $\xi^{\prime}=\sin \theta^{\prime} \approx \theta^{\prime}=\theta_{s}-\theta_{0}$ and

$$
u=\frac{D \nu}{c} \cos \theta_{0}=\frac{D \cos \theta_{0}}{\lambda}
$$

Introducing $\tau_{i}$, then $\theta \Rightarrow \theta^{\prime}$, i.e, absolute position $\Rightarrow$ relative position and the fringe pattern is attached to the pointing center. Here $u$ can be considered as a spatial frequency of the fringe defined by the projected baseline in the unit of $\lambda$. Also, since $u$ changes with the earth rotation, we can map the source at different $u$ if the antennas track the source during observation. The resolution is then given by $1 / u$.

## Interferometer

The power reception pattern of an interferometer is the antenna reception power pattern $\left(A_{1}\right)$ multiplied by the correlator fringe pattern $r$ :

$$
r_{i}(u, \theta)=\cos \left[2 \pi u\left(\theta-\theta_{0}\right)\right] A_{1}\left(\theta-\theta_{0}\right)
$$

$A_{1}$ is now called the primary beam pattern (i.e., the field of view) of the antenna.


## Visibility function

For an extended source of brightness $B_{1}\left(\theta_{s}\right)$, the output power of the interferometer is

$$
R\left(u, \theta_{0}\right) \propto \triangle \nu \int_{\text {source }} B_{1}\left(\theta_{s}\right) \cos \left[2 \pi u\left(\theta_{s}-\theta_{0}\right)\right] A_{1}\left(\theta_{s}-\theta_{0}\right) d \theta_{s}
$$

Since the antennas always track the source and the field of view is small (i.e., $<10 \operatorname{arcmin}$ ), we can define $\xi^{\prime}=\theta_{s}-\theta_{0}$ and $B_{1}\left(\theta_{s}\right) \rightarrow B\left(\xi^{\prime}\right)$. So,

$$
R\left(u, \theta_{0}\right) \rightarrow R(u)=\triangle \nu \int_{\text {source }} B\left(\xi^{\prime}\right) \cos \left(2 \pi u \xi^{\prime}\right) A_{1}\left(\xi^{\prime}\right) d \xi^{\prime}
$$

==> Fourier Transform of the source brightness distribution! => Visibility!

## Example: SMA



Submillimeter Array: Number of antennas: $n=8$, number of unique baselines (distance between pairs of antennas): $n(n-1) / 2=28$.

How about ALMA, which has 16 antennas in the Early Science phase, and 50 antennas in the full operation mode?

## Example: SMA HH 211 Jet


$==>$ Resolution given by the synthesized beam fitted to the main lobe of the dirty beam ( $\sim 1 / u_{\max }$ )
$==>$ Source image given by inverse Fourier Transform of the Visibility (Next Lecture)

