Aperture Synthesis and Imaging

Recommended readings:

Clark 1999, ASPC, 180, 1; Thompson 1999, ASPC, 180, 11

Spatial Coherence Function III A

Given the direction cosines, we choose $s=\left(l, m, \sqrt{1-l^{2}-m^{2}}\right)$ and $s_{\mathbf{0}}=$ $(0,0,1)$ so that

$$
\begin{aligned}
\frac{\nu \boldsymbol{s} \cdot\left(\boldsymbol{r}_{\mathbf{1}}-\boldsymbol{r}_{\mathbf{2}}\right)}{c} & =u l+v m+w n \\
\frac{\nu \boldsymbol{s}_{\mathbf{0}} \cdot\left(\boldsymbol{r}_{\mathbf{1}}-\boldsymbol{r}_{\mathbf{2}}\right)}{c} & =w \\
\mathrm{~d} \Omega=\frac{\mathrm{d} l \mathrm{~d} m}{n} & =\frac{\mathrm{d} l \mathrm{~d} m}{\sqrt{1-l^{2}-m^{2}}} .
\end{aligned}
$$

Substituting the above relations, we find the spatial coherence function to be

$$
V_{\nu}(u, v, w)=\iint I(l, m) e^{-2 \pi i\left[u l+v m+w\left(\sqrt{1-l^{2}-m^{2}}-1\right)\right]} \frac{\mathrm{d} l \mathrm{~d} m}{\sqrt{1-l^{2}-m^{2}}}
$$

where the integral is taken to be zero for $l^{2}+m^{2} \geq 1$.

Coordinate Systems

\therefore Measurements described by

$\lambda(u, v, w)$
Radiation on celestial sphere described by direction
cosines
$\left(l, m, \sqrt{1-l^{2}-m^{2}}\right)$

TMS Fig. 2.7

Clark 1999, ASPC, 180,

Spatial Coherence Function IV

Sources in a small patch of sky. The second special case consider all the radiation of interest comes from only a small portion of the celestial sphere, i.e. $s=s_{0}+\boldsymbol{\sigma}$ with $s_{\mathbf{0}} \cdot \boldsymbol{\sigma}=0$. In other words, $|l|$ and $|m|$ are small that $\left(\sqrt{1-l^{2}-m^{2}}-1\right) w \simeq 0$ and the spatial coherence function becomes

$$
V_{\nu}(u, v)=\iint I_{\nu}(l, m) e^{-2 \pi i(u l+v m)} \mathrm{d} l \mathrm{~d} m
$$

where $V_{\nu}(u, v)$ is the coherence function relative to the phase tracking center, s_{0}.

Given the above relationship between $V_{\nu}(u, v)$ and $I_{\nu}(l, m)$, it is obvious that the direct inversion reads

Response of Antenna

When an antenna is pointed at a source with intensity distribution described by $I(\nu, \theta, \phi)$, the power P received by the antenna in bandwidth

$$
I_{\nu}(l, m)=\iint V_{\nu}(u, v) e^{2 \pi i(u l+v m)} \mathrm{d} u \mathrm{~d} v
$$

In practice, V_{ν} is not known everywhere but is sampled at particular places on the $u-v$ plane described by a sampling function, $S(u, v)$, that $S(u, v)=0$ where no data have been taken. One can compute

$$
I_{\nu}^{D}(l, m)=\iint V_{\nu}(u, v) S(u, v) e^{2 \pi i(u l+v m)} \mathrm{d} u \mathrm{~d} v
$$

where $I_{\nu}^{D}(l, m)$ is referred to as the dirty image; its relation to the ideal intensity distribution is

$$
I_{\nu}^{D}=I_{\nu} \otimes B
$$

where $B(l, m)$ is the so-called synthesized beam or point spread function

$$
B(l, m)=\iint S(u, v) e^{2 \pi i(u l+v m)} \mathrm{d} u \mathrm{~d} v
$$ $\Delta \nu$ from element $\Delta \Omega$ of solid angle is given by

$$
P=A(\nu, \theta, \phi) I(\nu, \theta, \phi) \Delta \nu \Delta \Omega
$$

where $A(\nu, \theta, \phi)\left(\mathrm{m}^{2}\right)$ is the effective collecting area of the antenna. The normalized antenna reception pattern, A, or power pattern is defined as
$\mathcal{A}(\nu, \theta, \phi)=A(\nu, \theta, \phi) / A_{0}$,
where $A_{0}\left(\mathrm{~m}^{2}\right)$ is the response at the center of the main lobe and is equivalent to the effective area of the antenna.

Effect of Primary Beam

In practice, the interferometer elements are not point probes which sense the voltage at that point, but are elements of finite size and directional sensitivity. The normalized reception pattern of each element, i.e. the primary beam needs to be included

$$
V_{\nu}(u, v)=\iint \mathcal{A}_{\nu}(l, m) I_{\nu}(l, m) e^{-2 \pi i(u l+v m)} \mathrm{d} l \mathrm{~d} m
$$

where $\mathcal{A}_{\nu}(l, m)=A_{\nu}(l, m) / A_{\nu, 0}$.
The calibration with the element directional sensitivity \mathcal{A}_{ν} should be postpoined to the final step of deriving the sky intensity distribution and it should simply divide the derived intensities. Such division is often referred to as primary beam correction and will, however, not only produce a better estimate of the actual intensities in this direction, but will also increase the errors in directions far from the phase tracking center.

Projection of Baselines I

With multi-element arrays, it is convenient to specify the antenna positions in a Cartesian coordinate system. For example, a system with X the direction of the meridian at the celestial equation, Y the East, and Z toward the North celestial pole. Let L_{X}, L_{Y}, and L_{Z} the corresponding coordinate differences for two antennas, the baseline components (u, v, w) are given by
$\left[\begin{array}{l}u \\ v \\ w\end{array}\right]=\frac{1}{\lambda}\left[\begin{array}{ccc}\sin H_{0} & \cos H_{0} & 0 \\ -\sin \delta_{0} \cos H_{0} & \sin \delta_{0} \sin H_{0} & \cos \delta_{0} \\ \cos \delta_{0} \cos H_{0} & -\cos \delta_{0} \sin H_{0} & \sin \delta_{0}\end{array}\right]\left[\begin{array}{c}L_{X} \\ L_{Y} \\ L_{Z}\end{array}\right]$,
$\delta=90^{\circ}$
where H_{0} and δ_{0} are the hour angle adn declination of the phase reference position. The elements in the transformation matrix are the direction cosines of the (u, v, w) axes relative to (X, Y, Z) axes.

Projection of Baselines II

Eliminating H_{0} from the expressions for u and v, we can obtain the equation of an ellipse in the (u, v) plane:
$u^{2}+\left(\frac{v-\left(L_{z} / \lambda\right) \cos \delta_{0}}{\sin \delta_{0}}\right)^{2}=\frac{L_{X}^{2}+L_{Y}^{2}}{\lambda^{2}}$.
The ellipse is simply the projection onto the (u, v) plane of the circular locus traced out by the tip of the baseline vector. Since $I(l, m)$ is real, $V(-u,-v)=V^{*}(u, v)$. For an array of antennas, the ensemble of elliptical loci is the sampling function, $S(u, v)$.

Thompson 1999, ASPC, 180, 1

- Loci for an array at

latitude $+40^{\circ}$

From Visibility to Images

Observed quantities:	
\qquad Visibilities	$V(u, v) S(u, v)=\iint \mathcal{A}(l, m) I(l, m) e^{-2 \pi i(u l+v m)} \mathrm{d} l \mathrm{~d} m$
Sampling function	$S(u, v)=\sum_{k=1}^{N} \delta\left(u-u_{k}, v-v_{k}\right)$

Generating images from visibilities

| Synthesized beam | $B(l, m)$ | $=\iint S(u, v) e^{2 \pi i(u l+v m)} \mathrm{d} u \mathrm{~d} v$ |
| ---: | :--- | ---: | :--- |
| Dirty map | $I^{D}(l, m)$ | $=[\mathcal{A}(l, m) I(l, m)] \otimes B(l, m)$ |
| | $=\iint V(u, v) S(u, v) e^{2 \pi i(u l+v m)} \mathrm{d} u \mathrm{~d} v$ | |

where R_{k}, T_{k}, and D_{k} are weights assigned to the visibilities indicating their reliability, the tapering, and the density weighting.

Imaging with Miriad

Why Restoring a Beam?

- Incomplete sampling with an array leads to a non-ideal
beam with sidelobes

sidelobe

Calibrator 0359+509

Dirty map of 0359+509
Beam of 0359+509

Residual Map of 0359+509

\therefore No more significant feature
Deconvolution okay
Residual map of 0359+509

Channel Maps - Data Cube

Data cube (l, m, v)

- Probe radial velocity through Doppler effect in the 3rd dimension
- $\mathrm{CH}_{3} \mathrm{CN} \mathrm{J}=12$ - $11 \mathrm{~K}=3$

Thanks for Coming...

