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Elementary Interferometer

D: baseline length

θ: angle of the pointing direction from

the zenith, changing with earth rotation.

τg : geometrical delay= D
c

sin θ

The wavefront from the source in direction

θ is essentiallyplanarbecause of great distance

traveled, and it reaches the right-hand antenna

at a timeτg before it reaches the left-hand one:

Right: E cos(2πν(t − τg)) Left: E cos(2πνt)

The projected length of the baseline

on the sky,D cos θ, changes as the earth rotates.
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Elementary Interferometer

τg : Geometrical time delay

τi: Instrumental time delay

X: Bandpass amplifiers.

Correlator: Multiplier+ Integrator

Output: Fringe Visibility

Multiplier:

Multiply the signals from the two antennas.

⇒ Signals are combined by pairs!

Integrator:

Time Averaging Circuit, e.g., 30 sec integration

time for each scan in a SMA observation.
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Radio Interferometer in reality

Consider an interferometer tracking a source with the pointing center ats0.

Heres0 ands are unit vectors withs = s0 + σ andDλ = D/λ. The geometrical delay is

τg =
D · s

c
=

Dλ · s

ν
=

Dλ · (s0 + σ)

ν

whereDλ · s is the baseline length projected onto thes direction andν = c/λ.
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Complex Visibility
The output from the interferometer is (see last lecture)

R(Dλ, s0) = △ν

Z

4π

A(σ)B(σ) cos[2πν(τg − τi)]dΩ

Here,A is the primary beam (i.e., the field of view) of a single antenna,B is the source brightness

distribution, and cosine term is the output from the correlator. With

τg =
Dλ · (s0 + σ)

ν

then
R(Dλ, s0) = △ν

Z

4π

A(σ)B(σ) cos[2πDλ · (s0 + σ) − 2πντi]dΩ

= △ν

Z

4π

A(σ)B(σ) cos[(2πDλ · s0 − 2πντi) + 2πDλ · σ]dΩ

= △ν cos(2πDλ · s0 − 2πντi)

Z

4π

A(σ)B(σ) cos(2πDλ · σ)dΩ

−△ν sin(2πDλ · s0 − 2πντi)

Z

4π

A(σ)B(σ) sin(2πDλ · σ)dΩ

Complex Visibility, with cosine and sine components? Do we need the two components?
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Complex Correlator
To retrieve the sine term, we can add additional correlator with additional time delay of1

4ν

(corresponding to a phase delay ofπ
2

) so thatτi = τg + 1
4ν

before the multiplier.

This complex correlator, with two correlators, can measureboth components. Here, Quadrature means
λ
4

or π
2

. As a result,

R(Dλ, s0) ∝
Z

4π

A(σ)B(σ) cos(2πDλ · σ)dΩ − i

Z

4π

A(σ)B(σ) sin(2πDλ · σ)dΩ

=

Z

4π

A(σ)B(σ)e−i2πDλ·σdΩ ≡ V(Dλ) (1)

==> the output isa complex visibilityV, as a Fourier Transform ofA(σ)B(σ), with cosine and sine

components being the real and imaginary components.
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Radio Interferometer
The correlator can be thought of "casting" two sinusoidal fringe patterns of angular scale1/Dp

λ

radians, onto the sky.Dp
λ

: projected baseline. The correlator multiplies the sourcebrightness by these

wave patterns, and integrates the result over the primary beam.

Fringe separation (angular scale) is1/Dp
λ

radian, withDp
λ

= Dλ cos θ0
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Choosing appropriate Coor. System

To solve the visibility function, choose an appropriate Coordinate System(u, v, w) v.s. (ξ, η, ζ)

V(Dλ) =

Z

4π

A(σ)B(σ)e−i2πDλ·σdΩ

Dλ = (u, v, w)

s = (ξ, η, ζ)

s0 = (0, 0, 1)

σ = s − s0 = (ξ, η, ζ − 1)

dΩ =
dξdη

ζ

Herew → so, i.e. pointing center.

and(u, v, w) rotates as the earth rotates.

ξ, η, ζ: direction cosines ofs onu, v andw.

ξ2 + η2 + ζ2 = 1, ζ =
p

1 − ξ2 − η2
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Radio Interferometer
With the chosen coordinate system, the plane of the sky is then

�
6

u, ξ

v, η

North

East
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Visibility function from 3D to 2D
With the coordinate system, we have

V(u, v, w) =

Z

∞

−∞

Z

∞

−∞

A(ξ, η)B(ξ, η) exp{−i2π[uξ + vη + w(
p

1 − ξ2 − η2 − 1)]}

× dξdη
p

1 − ξ2 − η2

Now sinceA drops rapidly whenξ2 + η2 > l2, wherel is the full width of the primary beam of the

antennaandl2 ≪ 1, we only need to consider smallξ andη. In that case,

w(
p

1 − ξ2 − η2 − 1) ≃ −1

2
(ξ2 + η2)w

i.e, higher order ofξ andη can be neglected. Then

V(u, v, w) ≃ V(u, v) =

Z

∞

−∞

Z

∞

−∞

A(ξ, η)B(ξ, η)
p

1 − ξ2 − η2
e−i2π(uξ+vη)dξdη

Thus,V is approximately independent ofw, and can be considered to be on the flatuv plane. This is

because the field of view is so small that each small part of a sphere can be considered as a flat plane.
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Mapping: Inverse Fourier Trans.
How to retrieve the source brightness distributionB? Take the the inverse Fourier transform, we have

A(ξ, η)B(ξ, η)
p

1 − ξ2 − η2
=

Z

∞

−∞

Z

∞

−∞

V(u, v)ei2π(uξ+vη)dudv

and then

B(ξ, η) =

p

1 − ξ2 − η2

A(ξ, η)

Z

∞

−∞

Z

∞

−∞

V(u, v)ei2π(uξ+vη)dudv ∝ F−1[V]

However, theuv plane is not fully sampled. The coverage in theuv plane is sampled by available

baselines. Thus, introducing asampling functionS(u, v), we have a"dirty image":

BD(ξ, η) =

p

1 − ξ2 − η2

A(ξ, η)

X

k

V(uk, vk)S(uk, vk)ei2π(ukξ+vkη)dudv ∝ F−1[VS]

with the sampling function

S(uk, vk) = δ(u − uk, v − vk)
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Dirty image and Deconvolution

So what we have is the "dirty image" obtained via aninverse Fourier transform:

BD(ξ, η) ∝ F−1[VS]

∝ F−1[V] ⊗F−1[S]

= B(ξ, η) ⊗ b(ξ, η)

whereb is the dirty beam [point spread function (PSF)] given by

b(ξ, η) ≡ F−1[S] =
X

k

S(uk, vk)ei2π(ukξ+vkη)dudv

Thus, what we really have isthe image brightness convolved with the dirty beam. To retrieve the image

brightness, we needdeconvolution by this dirty beam.

The main lobe of this dirty beam (PSF) can be fitted by a Gaussian beam and is called the synthesized

beam.This synthesized beam determines the angular resolution and its size depends onλ/Dmax.
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Antenna Spacing Coordinate

Here(X, Y, Z) is a right-handed Cartesian coordinate system used to specify the relative positions of

the antennasin the array.X andY are measured in a plane parallel to the earth’s equator,X in the

meridian plane,Y toward the east, andZ is measured toward the north pole. Here, celestial pole is just

the earth’s pole extended into space, celestial equator is the earth’s equator. SourceS rises in the east,

passes through the local meridian and then sets in the west. Note thatu is in theXY plane.H changes

as the earth rotates, producing different(u, v, w). When the source at Zenith,H = 0, thenu = DY

andv = −DX sin δ + DZ cos δ, with (DX , DY , DZ) being baseline in unit ofλ.
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Example: BIMA

Size: 6 meter; Number of antennas:n = 10; Number of baselines:n(n − 1)/2 = 45.
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Example: BIMA Zenith snapshot

Number of antennas:n = 10, number of (unique) baselines:n(n − 1)/2 = 45.

Each unique baseline supplies simultaneously measurements on twouv points. When the source at

Zenith,H = 0, thenu = DY andv = −DX sin δ + DZ cos δ.
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UV coverage and Dirty Beam

Traditionally,u increases to the right, whileξ increases to the left!
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Dirty beam - continue
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Example: Two Gaussians

B(ξ, η) b(ξ, η) B(ξ, η) ⊗ b(ξ, η)
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Interferometer Sensitivity
For one single antenna, the RMS fluctuation (noise) in antenna temperatureis (see last lecture of Prof

Chin)

△TA =
MTsys√

t△ν

whereM is a factor of order unity used to account for extra noise fromanalog to digital conversions,

digital clipping etc. Thus, the fluctuation (noise) in flux densityis:

△Sν = Γ−1△TA =
2k

ηA

MTsys√
t△ν

whereΓ = ηA
2k

(usually with a unit of K Jy−1) is the system sensitivity for one single antenna with the

aperture areaA and the aperture efficiencyη < 1.

For atwo-element system (i.e. interferometer), the fluctuation (noise) becomes:

△Sν =
2k

ηA

MTsys√
2t△ν

The extra factor of
√

2 arises from the use of 2 antennas, and the fact that the correlation of two noisy

signals (samples) leads to an increase in the noise by a factor of
√

2.
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Interferometer Sensitivity
For an array ofn identical telescopes, there areN = n(n − 1)/2 simultaneous pair-wise correlations.

Then the noise in flux density becomes

△Sν =
2k

ηA

MTsys√
2Nt△ν

=
2k

ηA

MTsys
p

n(n − 1)t△ν

Thus,the noise is inversely proportional to
p

n(n − 1)A, which approaches the total collecting area

of the array for largen. Inserting the numbers, we have

△Sν = 1.45
MTsys

ηA
p

n(n − 1)t△ν
(Jy)

Heret in hr,△ν in kHz, andA in m2. Here Jy= 10−23 erg s−1 cm−2 Hz−1. Let’s check the

performance of the SMA at 1.3 mm (for 230 GHz) in the continuummeasurement and let M=1.

ForSMA, n = 8, A = 36 m2, η ∼ 0.7, 4 hr integration on source withTsys = 250 K at transit and

△ν = 4 GHz,△Sν = 0.48 mJy. In reality,Tsys increases with decreasing elevation. So the noise

could actually be a factor of 2 higher.

How aboutALMA ? In ES, it has 16 antennas each with a diameter of 12 m. How muchfaster,

assuming the same△ν andη, but with 25% better inTsys at higher altitude at 5000 meter?
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ALMA Spec in ES

Array: 16 12-m antennas

Receiver Bands: 115 GHz, 230 GHz, 345 GHz, 690 GHz

Corresponding Typical lines: CO 1-0, CO 2-1, CO 3-2, CO 6-5

Primary beam (field of view): 45", 22", 15", 7"

baseline lengthD: at least 250 m (may reach 1 km).

Synthesized Beam (Angular Resolution): at least 2", 1", 0.7", 0.35" (may be 4 times higher)

Continuum Sensitivity (8 GHz bandwidth in 1 min) (mJy): 0.3, 0.4, 0.9, 3.1

Note that at 230 GHz, SMA with 4GHz bandwidth will take about 4hr to achieve that sensitivity.
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